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After a short description of the chemical background of etching processes, a simplified 
mathematical model is formulated. This contains two parameters that determine the etching 
profile. Two approaches for obtaining a numerical solution are discussed. First, the problem 
in terms of a variational inequality is reformulated and some new results on its numerical 
solution are presented. Then, how the problem can be solved by means of a moving grid 
method as well is explored. Results obtained by both methods are presented and compared. 
The latter method is applicable to a much wider class of boundary conditions, but the 
variational inequality approach seems attractive for other reasons. Finally this work is com- 
pared with some experimental results. 0 1985 Academic Press, Inc. 

I. INTRODUCTION 

Wet chemical etching is an important technique in modern technology as can be 
exemplified by the production of oil filters, masks for colour TV sets and integrated 
circuits. A typical case is the etching of Fe with FeCl,, whose chemical reaction at 
the interface is given by 

Fe(,) + 2 FeCl,,,, 5 3 FeCl,(,,. 

Another example is the etching of SiO, by HF solutions buffered with NH,F. This 
process is important in the manufacturing of micro-electronic devices. 

In this paper the shape of the etching profile is investigated numerically. In prac- 
tice the following features of the etching profile are important. First, there is the 
phenomenon of undercutting, by which we understand the etching of the sidewalls 
below the photoresist layer (see [ 1,2]). In the production of integrated circuits, 
undercutting could result in short-circuit and other inaccuracies. Further, at contact 
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windows a tapered profile at the edge of the window is required. A sharp step at the 
edge is a source of many failures of integrated circuits (see [3]). In the 
mathematical model, parameters related to the etching profile can easily be varied. 
By solving the etching problem the influence of these parameters can be 
investigated. Combined with experiments, this model can be a useful tool to predict 
and understand the etching profile. For more details concerning the numerical 
solution of the etching problem we refer to [4]. 

II. MATHEMATICAL MODEL 

We define the following problem. A gap of width 2a and length L is to be etched 
in a flat plate. The remainder of the plate is covered with a protective (photoresist) 
layer. Since we assume that L is much larger than 2~2, the problem can be con- 
sidered as two dimensional (see Fig. 1). 

We make the following assumptions. There is no convection in the etching 
medium; the etching process is isotropic; the thickness of the photoresist layer is 
infinitely small and only one component of the etching liquid determines the 
process. In the region Q(t) the concentration C(mol/m3) of the component satisfies 
the diffusion equation 

in Q(t). (2.1) 

D(m’/sec) is the diffusion coefficient (see [ 51). Since there is no mass transfer 
through the photoresist layer f,(t), the boundary condition is given by 

ac 
T$=O on r,(t) (2.2) 
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FIG. 1. The etching fluid G(t) is bounded by the outer boundary I-,, the photoresist layer rz(t), and 
the moving boundary S(t). D\f2(r) denotes part of the solid. 
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where fi denotes the unit normal vector on f*(t) pointing outward with respect to 
Q(t). At r, the concentration is set equal to Co. Typical of this problem is that part 
of the boundary is moving with respect to time. The mass balance at the moving 
boundary S(t) yields the boundary condition 

ac v,= -fs- an on S(t). (2.3) 

v, can be interpreted as the normal velocity of the boundary S(t) and the parameter 
0 (m2/sec/mol) is a material constant. Another condition on the moving boundary 
is obtained by the fact that the rate of reaction must equal the rate of diffusion. For 
a first-order reaction like the one considered here this leads to the boundary con- 
dition (see [6]) 

DdC %= -kC on S(t) (2.4) 

where k (m/set) denotes the rate of reaction. When k is large with respect to D/a 
the boundary condition (2.4) can be replaced by 

C=O on S(t). (2.5) 

The initial conditions for C are given by 

c=co in Q(t=O). (2.6) 

We introduce the following characteristic quantities: length scale a, concentration 
scale C,, and time scale a’/D. In dimensionless form the problem is to find a 
function C = C(x, t), x E Q(t), t E [O, r] and a boundary S(t), t E [0, T] such that 

$-AC=0 in Qn= ((x, t) I x~Q(t), t~(o, T)} (2.7) 

together with the initial condition 

C=l in Q(t=O) 

and boundary conditions 

C=l on Tit = r, x (0, T), 

ac 
z=O on r2,= (b-6 t) I xEr2(t), f~ (0, T)}. 

(2.8) 

(2.9) 

(2.10) 
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The conditions on the moving boundary S(t) give rise to two different models: If k 
tends to infinity, 

c=o (2.11) 

de on S,= ((x, t) I x~S(t), tE(O, T)}, 

an= -Bvn 
(2.12) 

whereas for finite k, 

(2.13) 

(2.14) 

In this formulation there appear two dimensionless groups. The first one is 
B= D/UC, and the second one, called the Sherwood nu’mber, is defined by 
Sh = ak/D. 

The magnitude of Sh indicates which model is to be considered. For large Sh the 
problem is diffusion-controlled, whereas for small Sh the problem is activation-con- 
trolled. Both models can occur in practice. Similar diffusion problems are encoun- 
tered in crystal growth theory (see [7]). The above-stated problem is a so-called 
moving boundary problem. After [S], we define free boundary problems to be 
boundary value problems involving (partial) differential equations on domains, part 
of whose boundaries must be determined as part of the solution. A moving boun- 
dary problem is defined to be an initial-value problem for (partial) differential 
equations involving free boundaries. For those who are interested in a general 
account of the mathematical methods applicable to free and moving boundary 
problems as well as their physical background, we refer to [IS, lo]. 

III. METHOD OF VARIATIONAL INEQUALITIES 

The method of variational inequalities will be applied to problem (2.7b(2.12). 
More generally the conditions (2.8)-(2.10) are replaced by C = C,, in LJ(t = 0) and 
C=g on rt=r,,ur2,, respectively. The functions g.= g(x, t) and C, = C,(x) are 
nonnegative, while B is a strictly positive constant. 

Note that, since on the one hand C vanishes on S, and on the other hand C is 
nonnegative in Qn, the normal derivative of C is nonpositive on S,, which implies 
that Q(t) is a nondecreasing set with respect to t. In this respect the formulation of 
the etching problem is equivalent to the one-phase Stefan problem. The main dif- 
ficulty in solving this problem is of course to satisfy the two interface conditions on 
the moving boundary S,. A technique which avoids this difficulty and which 
eliminates in some sense the moving boundary S, is to formulate the problem as a 
variational inequality. As we shall see, this has two major advantages: 
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(i) A formulation in terms of a variational inequality leads in a simple way 
to existence and uniqueness theorems. 

(ii) The formulation suggests an efficient numerical method for which 
stability and convergence can be proved. 

We assume that D is chosen large enough so as to contain strictly a(t) for all 
TV (0, T). To formulate the etching problem as a variational inequality let us define 
an extension C of C to the whole domain Q, = D x (0, T) by 

C(x, t) = Cb, t) in QQ o in QD\QD 
and, accordingly, 

on Tr 
on (aDx(O, T)) \ r, 

in Q(t=O) 
in D\Q(t =O). 

Next we define xn as the characteristic function of Q, in Q,. It can be shown (see 
[ 111) that C satisfies 

&g on aDx(0, T) (3.2) 

C=Co in D, t=O (3.3) 
in a distributional sense. 

Following [12] and [13], we introduce the following dependent variable, 

u(x, t) = j-i t(x, z) dz XED, tE(0, T). (3.4) 

By integrating equation (3.1) with respect to t, we obtain 

with f(x) = C,(x) - B( 1 - xn(x, 0)), f independent of time. 
It is easy to verify that u solves the following problem: 

$-h-f>0 
i 

U20 > in QD (3.6) 

(35) 

($4,_,>.=0 ) 
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x, z) dt = G(t) on dDx(O, T) 

u=o in D, t = 0. 

It is immediately verified that, reciprocally, if u is a solution of (3.6), then & au/at 
is a solution of the original problem (3.1), (3.2), and (3.3). 

To prove existence and uniqueness of a solution of problem (3.6) we introduce 
some function spaces: L,(D) denotes the Hilbert space of square-integrable 
functions on D with inner product 

(II, w),= jD u- wdx U, w E L,(D). 

The space H’(D) is the Sobolev space of functions on D which belong to L,(D) as 
well as their first derivatives. The inner product in H’(D) is 

(14 w), = (0, w)o + (VU, VW), u, w E H’(D). 

Finally we define a closed convex nonempty subset K(t) of H’(D) by 

K(t)={uEH’(D)[u~O,u=G(t)inthetracesenseonaD). 

From (3.6) we deduce easily that u(x, t) satisfies formally 

($> u-u), +(vu,v(u-u)),-((f,u-u)~~o VuEK(t), u(t)eK(t)(3.7) 

u(0) = 0. (3.8) 

An element UE L,(O, T; H’(D)) with au/at E L,(O, T; L,(D)) is called a strong 
solution of the etching problem if u satisfies (3.7) together with (3.8). Here we 
denote by L,(O, r; H) generally the space of &-integrable functions on (0, T) with 
values in H. The following theorem is proved in [14]: 

THEOREM 3.1. Let &E L,(D) and GE L,(O, T; H’/‘(aD)), then there exists a uni- 
que strong solution of the etching problem. The mouing boundary is the interface 
separating the regions 

{Cx, t)EQ,Iu(x, G-0) and {W)~Q,Iu(x,t)=O). 

In the remainder of this section we shall discuss how to solve the parabolic 
variational inequality (3.7), (3.8) using a finite element method. To do so we 
assume that D is a polygonal region in R 2, Then we cover D by a union of non- 
degenerate triangles T with diameters less than or equal to h. With respect to time 
we use a finite difference method with step AT= T/N, where N is a sufficiently large 
integer number. 
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Let Vh denote the finite element approximation of H’(D) defined as the space of 
continuous functions which are afine on each triangle T. The set K(t) is discretized 
as 

K;= {U,E V,Iu,>O, v,I,,=G,(n*AT)} 

where the function Gh denotes an approximation of G which is piecewise con- 
tinuous on D and affine on each nonempty intersection Tn LJD. We introduce the 
following notations: 

u;: = uh(n * AT) U;:+@=&4;:+‘+(1-e)U;: O<d<l 

on [n,AT, (n+ l).AT] 

The finite element analogue of (3.7) (3.8) is formulated as follows: 
Let ui=O. 
Then for n = 0, l,..., N - 1, find u;’ ’ E Kz+ ’ such that 

u”+l-u;: 
h 

AT 
, vh-u;+’ +(v~;:+e,v(~h--u;:+l))O~(f,~h-~;:+’)O vV,,EK”+’ h . 

0 

(3.9) 

The following theorem can be deduced from [9]: 

THEOREM 3.2. (i) There exists u unique solution ui + ‘, n = 0, l,..., N - 1 of (3.9). 
(ii) The solution u;, n = O,..., N of (3.9) is stable in the sense that 

ll4x + f IIWl~ 6 Y y independent of h and AT 
I= 1 

provided 

(l-20).AT(S(h))‘<2 for O<B<; (3.10) 

where S(h) = 3/2. h. maxT l/I Tj, ( T( is the area of T. 
(iii) When (AT, h) + (0,O) in such a way that condition (3.10) is satisfied and 

(1 - 0). AT. (S(h))’ bounded (3.11) 

then uh -+ u weakly in L,(O, T; H’(D)). 

For the actual computation of u;+ l we shall write problem (3.9) in another form. 
For this we remark that to every element u,, E vh there corresponds a vector 6, 
whose components are just the values of u,, in the nodal points. Thus 
6, = (uh, ,..., oh,,,,), where A4 is the number of nodal points and vhj’ ah(xI), xi being 



254 VUIK AND CUVELIER 

the jth nodal point. & is the set of M-dimensional vectors whose components are 
nonnegative and which satisfy vhj = Gh (x,, n AT) when xj E 8D. Furthermore we 
define a matrix Ah and a vector 6;: by 

“hTAh@h = kT (Vh, w/Jo + WV,, VW,),, vu,, w,, E v,,, 

(&)Twh=(f, wh)O+-&(“;, W~)O+(e- l)(v~;:,vw,),, VW, E Vh, 

then problem (3.9) can be written as 

find ii;+’ E q + ’ such that 

Jh(tl;+‘kh~;+, J(“h)> J(Uh) = IU;A,U, - (6)’ ii, 

or, equivalently, 

(3.12) 

find .=Ch=U;:+‘~P~+‘such that 

A,,x, - 6;: > 0; (XJT(A,X,, - 6) =O. 
(3.13) 

This quadratic programming problem will be solved by the method of successive 
overrelaxation with projection [ 15, 161 which can be considered as a generalization 
of the classical Gauss-Seidel algorithm. Let Xt E R + l, then we define the sequence 
xh 9 
-Cl’ $2’ -Cm) 

,, ,.*., xh ,..., of elements in R+ l by 

Xhr 
-(m + 112) = _ 

& { :!’ (Ah)&+‘) + f (Ah)&;)-& 
J 1 j=i+l (3.14) 

$y+‘)= max { 0, (1 - 0) Xi:) + oXi? + 112)} 

where w is called the relaxation parameter. Since the matrix A,, is symmetric and 
positive definite, the following result concerning the convergence of the sequence 
wYm=o,1,2 . . . . . can be proved [ 15, 163. 

THEOREM 3.3. For any co satisfying 0 <co < 2, the sequence (X~m)},,,=,,,,2,.,, 
defined by (3.14) converges to the solution Xh of problem (3.13). 

A natural choice for the initial guess Xi of the solution 1, is of course the solution 
of the preceding time step, thus Xlp) = u;. Another question that arises is whether 
there is a value of w such that the rate of convergence is optimized. When the 
classical successive overrelaxation method is applied to solve a system of linear 
equations JhZh = b”h, where 2, is symmetric, positive definite and 2-cyclic con- 
sistently ordered, the optimal relaxation parameter cZoPt is known in terms of the 
spectral radius fi of the Gauss-Seidel GS(A”,) matrix corresponding to Ah [17] 

5 
2 

opt= 1+ (1 -jqlP 
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When a similar analysis is applied to the successive overrelaxation method with 
projection, the following results can be obtained [15, 161 (see also [4]). Let us 
denote by Z(Xh’“)) a subset of { 1,2,..., M} defined by the relation 

Then it can be proved that there exists an integer m, such that 

z(q)) = z&J for all m z-m,. 

Next we define by A,,(Z(zh)) the submatrix of A, obtained by deleting those 
elements (A& for which i # I@,,) or jC Z(Xh). Now it can be proved that if 
Z(zh) # a, xhj and (A,$h - e)j do not vanish simultaneously and B(t) is a simply 
connected domain, then the optimal value of o is given by 

2 
w~P~=1+(1-p)1/2’ (3.15) 

where p denotes the spectral radius of GS(A,(Z(~h))). Since, in general, neither 
Z(zh) nor p is known explicitly we use the following estimate for o+,~, which has 
proved to be very accurate in practice. First, we set o = 1 and we calculate 
#),..., Xh -(mo+2), where it was found that Ml/2 is a good approximation of m,. An 
estimate of the spectral radius of GS(A,(Z(f,))) is given by (cf. [18]) 

fi*=4 (mo+yq(mo+l); q’“‘= 2 qn)~~y)), m = 1, 2,.... 
j=l 

According to relation (3.15) we estimate wOpt by 

m*= 2 
1 + (1 --p(*)l’2’ 

Next we perform again m, iterations with o = 1 + 2/3(0* - 1). This value was 
chosen since for the computation of a more accurate estimate of Z.L, the relaxation 
parameter is preferably underestimated instead of overestimated [17, 181. Setting 
now 

I2=q (hl+2)/q(2mo+l) 

we use the following estimate of the spectral radius of GS(A,(Z(x,))) ([ 17, 18]), 

p**=t(l-;+“)’ 0=1+2/3(0*-l) 

hence using (3.15), 

(#** = 
2 

1 + (1 -p**)“*’ 

581/59/2-6 
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Finally, o,,~, will be slightly overestimated by taking 

w opt = 2 + 4/5(0** - 2). (3.16) 

Since it can be proved that on s(t) both u and &.@I are zero, the approximate free 
boundary was determined by an interpolation procedure based on the quadratic 
form of u near s(t) [4,9]. 

IV. MOVING GRID METHOD 

In Section III the etching problem was solved for infinite Sherwood number 
using the theory of variational inequalities. It seems to be impossible to construct a 
variational formulation for linite Sh. To solve problem (2.7)-(2.10) (2.13) (2.14) 
for finite Sh we shall use a moving grid method (see [19-211) based on a finite 
element discretization of the problem in the space variables and a finite difference 
discretization in the time variable. The moving grid method is based on the follow- 
ing principle. The solution C at time t = (n + 1) A T is calculated by solving the dis- 
cretized problem (2.7)-(2.10), (2.13) in the region Q(n. AT) bounded by rr, 
f *(n AT) and S(n . AT). Next the free boundary S( (n + 1). AT) is calculated by 
moving the boundary S(n . AT) according to the discrete analogue of (2.14). This 
procedure is repeated for n = 0, l,..., N- 1; note that ,S(t = 0) is known. This mov- 
ing grid method is also applicable for infinite Sherwood number, and this allows us, 
for Sh -+ 00, to compare the results obtained using the variational inequality 
approach with those obtained with the moving grid method. At each time step the 
finite element grid is adapted to ensure that the location of the moving boundary 
coincides with nodal points. The effect of the deforming grid is reflected by an extra 
(convective) term in the diffusion equation. Suppose that at time t = n. AT the 
nodal points are given by x,“, j= 1, 2 ,..., M, then the discrete backward time 
derivative of C at time (n + 1) AT in the nodal point x;’ ’ is given by 

acn+l 
at (x;+‘)= 

c"+l(x;+')- C"(xv+') 
AT (4.1) 

Since, in general, x7 + ’ is not a nodal point of the triangulation at time t = n. AT, 
the value of C” at x; + ’ must be obtained by linear interpolation 

cyxy+ ‘) = C”(xi”) + 8x7 *vqxg, (4.2) 

where 6x; = x; + ’ - x; ; and where it is assumed that x7 is close to xj” + ‘. Sub- 
stitution of (4.2) into (4.1) gives 

iqx;+I,= C”+yx;+l)-cn(x?) 6x? 
AT 

J - F+ VC”(xi”). (4.3) 
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The time discretization of (2.8) can now be written as 

c+ yx;;;- C”(x?) _ AC”+ 1 (X7+ ‘) = >;vqx;). (4.4) 

In the application of the finite element method to the etching problem, the domain 
above the photoresist layer is covered by triangles which do not vary in time. The 
remainder of Q(t) is subdivided into triangles which are adapted at each time step 
(see Fig. 2). 

For small values of t there is a difficulty because the triangles below the x1 axis 
are nearly degenerate. The angle condition [22], however, assures stability. Setting 

the finite element formulation corresponding to (4.4) reads 

for n = 0, l,..., N, find C; + l E V;: such that 

c;: + ltJh ds = (f”, Oh), (4.5) 
vu, E v;o, c; = COh 

where (0, w) = jn(,) V. w ds2 and V; denotes a subset of the finite element 
approximation of H’(Q(n * AT)) consisting of functions which are continuous on 

FIG. 2. The grid used in the moving grid method. 

58 l/59/2-6 * 
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Q(n. AT), aftine on each element and which satisfy the discrete analogue of (2.9). 
The space V& is smilar to V; but consists of functions which vanish on rr. As the 
stiffness matrix and the right-hand vector corresponding to (4.5) change at each 
time step, it is preferable to apply an iterative solution method rather than a direct 
one. 

Once the solution C;+ ’ has been calculated, we can use (2.14) to determine the 
new position of the free boundary. An explicit form of (2.14) is given by [21, 231 

?I+1 
VC;:-t’ .n= -g -Tn, 

AT (4.6) 

where Y = (s?, s;) denotes the position of the free boundary at time n. AT and the 
vector .r”+ ’ - .sn points in the normal direction. Equation (4.6) can be written as 

s ,~+‘=s.-~(VC;+l.~)~. (4.7) 

It can be proved [21] that scheme (4.5), (4.7) remains stable in internal nodes, but 
that for large AT instabilities in the solution can occur in the vicinity of the moving 
boundary. 

For large Sherwood numbers, the gradient of C;+ ’ at the moving boundary is 
approximately pointing in the normal direction. In this case (4.7) can be replaced 
by 

However, for small Sherwood numbers, the gradient of C;: + ’ at the moving boun- 
dary has a nonvanishing component in the tangential direction. Now we determine 
points sI+ *P with Eq. (4.8). The intersection of the line through the points s;?~‘~, 

J 

FIG.~. The moving boundary plotted for B= 10 and Sh = 1000. The solid line is computed with 
method 2, whereas the crosses represent the solution by method 1. 
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FIG. 4. The moving boundary plotted for B = 100 and Sh = 1000. The solid line is computed with 
method 2, whereas the crosses represent the solution by method 1. 

s?+ ‘1’ with the line through ~7 pointing in the normal direction, is a good 
J+l 

approximation of the free boundary point s;+ l defined by Eq. (4.7). 
Since the domain Q(t) is expanding in time, the finite element triangulation 

becomes coarser and coarser. When the grid size exceeds a certain limit the 
triangulation is replaced by a finer one. The solution C; on the finer grid is 
obtained from the solution C; on the coarser grid by linear interpolation. The inter- 
polation error introduced in this way is of the same order as the discretization 
error. 

V. RESULTS AND CONCLUSIONS 

The numerical method of solving the variational inequality-stated in Sec- 
tion III-has been evaluated for model problems whose exact solution is known. It 

FIG. 5. The moving boundary computed with method 2 is plotted for B = loo0 and Sh = 1000. 



260 VUIK AND CUVELIER 

t - 24. 

FIG. 6. The moving boundary computed with method 2 is plotted for B = 10 and Sh = 1 

appears that the estimated o speeds up the convergence considerably. In a one- 
dimensional problem Cryer’s estimation of w requires 31 iterations, whereas for our 
estimation 12 iterations are sulficient to obtain the same accuracy. After the 
solution is computed, the location of the moving boundary can be approximated by 
the nodal points, where the solution becomes zero. This requires a refined grid to 
locate the boundary with sullicient accuracy. With the parabolic interpolation men- 
tioned in Section111 the accuracy of the boundary estimation is much better. This is 
verified for model problems and follows easily from the Figs. 3 and 4, because the 
distance between the two solutions is small with respect to the radius of the 
triangles. The geometry of the problem is depicted in Fig. 1. Since the problem is 
symmetric with respect to the x2 axis, it is solved in the half space x, > 0. The 
photoresist layer is represented by a line at the xi axis. The outer boundary ri is 
chosen in such a way, that the concentration C at ri can be considered as nearly 
constant (C = 1). To avoid that for large values of the time t (or large values of B), 

FIG. 7. The moving boundary computed with method 2 is plotted for B = 100 and Sh = 1. 
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FIG. 8. The moving boundary computed with method 2 is plotted for B = loo0 and Sh = 1. 

the boundary rI is too far away from the gap, which would enlarge the com- 
putational work, the following asymptotic solution (cf. [24]) can be used: 

-(XT + xi) L X(&O, t-7) 

42 JY 
d4: dz 

-1 > 

for x2 3 0 and xi + ~22% 1. Using this approximation in our numerical scheme 
enables us to compute the solution fdr very large values of B. 

In Figs, 3-5 the etching profile is plotted. The solutions obtained by the 
variational inequality method (method 1) and the moving grid solution (method 2) 
show good correspondence. Method 1 is applied with 0 = 0.5. The time interval is 
divided equidistantly into a hundred time steps; the domain D is discretized with 
1291 grid points. There are no instabilities observed. The numerical problem is 
solved by the overrelaxation method with projection. After every ten time steps w,,,~ 
is approximated. With method 2 the time interval is also divided into a hundred 
time steps. Since G(t) increases with time the number of nodal points also increases 

FIG. 9, The moving boundary computed with method 2 is plotted for B = 10 and Sh = 0.1. 
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from 169 at t = 0 to 379 at t = T. In this method the linear equations are solved 
with a conjugate gradient method. 

For short times the profiles in Figs. 3-5 are deeper at the edge of the photoresist 
than at the middle of the gap. This agrees well with some results obtained in 
experiments at our laboratories. Later on this bulge disappears, whereas for large 
times the profiles tend to an ellipse [24]. The angle of the profile with the 
photoresist layer is 90 degrees. 

In Figs. 6-8 the solution is shown for Sh = 1. The bulge in the profile disappears 
for small values of Sh. The angle between the tangent at the profile and the 
photoresist layer is smaller than the corresponding angle for large values of Sh at 
the same etching depth. 

In Fig. 9 the solution is plotted for Sh = 0.1. The spacing between successive 
profiles becomes nearly equidistant. For Sh 4 1 the problem is activation-controlled. 
In this case the normal velocity of the moving boundary is constant in place and 
time. This is in accordance with the results plotted in Fig. 9. 

After comparison of the two methods the following- conclusions can be drawn. 
Method 1 has a firm mathematical basis. In general, method 1 requires less com- 
puting time than method 2, for the same accuracy. When there are several moving 
boundaries, or when the moving boundary meets a rigid wall, method 2 requires 
complicated programming, whereas method 1 is still easy to implement. A dis- 
advantage, however, is that for certain problems it is not easy, and perhaps 
impossible, to formulate a variational inequality, so method 2 has a wider range of 
applicability. 
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Note added in proof Actually as we shall show in a following paper formulas (2.13) and (2.14) are a 
kind of first-order approximations (for B and/or Sh large). In full generality the mass balance at the 
moving boundary yields 

$+CG,,= -ShC on S, 

g+ Co,= -Bun on S,. 

Formulas (2.11). (2.12) remain the same. 
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